Hybrid positioning algorithms
Simo Ali-Löytty
TISE 2006-seminar
Outline

- Research area
- Bayesian filtering
 - General formulation
 - Good filter?
 - Pros and cons
- Current research topics
 - Gaussian Mixture Filter (GMF)
 - Using restrictive information
Bayesian filtering in Hybrid Positioning

- GNSS
- GSM
- IMU
- WLAN

Measurements

- EKF
- GMF
- PF

Approximate solutions

- Optimal solutions

Motion model

- Position, Velocity, ...

...
Problem formulation

Initial state: \(x_0 \)

Motion model: \(x_{k+1} = f(x_k) + w_k \)

Measurement model: \(y_k = h(x_k) + v_k \)

The aim is to compute

\[
p(x_k | y_{1:k}) = \frac{ \underbrace{p(y_k | x_k)} \underbrace{p(x_k | y_{1:k-1})} } {\int p(y_k | x_k) p(x_k | y_{1:k-1}) \, dx_k} \]

current meas. state model and past meas. normalization
Good filter is:

Accurate estimates are accurate enough for personal positioning.

Consistent error estimates are accurate too.

Robust filter tolerates some modeling errors.

Fast can be computed in a portable terminal.
Pros and cons of some existing filters

EKF: Kalman filtering applied to *linearized* problem. EKF is *fast* and usually *accurate* but *not always consistent*.

EKF2: an elaboration of EKF that models nonlinearity better. EKF2 is *fast* and a bit more *accurate* than EKF but *not always consistent*.

PF: The Particle Filter based on *Monte Carlo* integration. PF is *slow* to compute but is otherwise almost *optimal* solution.
Current research topic: Gaussian Mixture Filter
Current research topic: Using restrictive information
Conclusion

Thank you for your attention!
Questions?