A Linear State Model for PDR+WLAN Positioning

Matti Raitoharju, Henri Nurminen and Robert Piché

TAMPERE UNIVERSITY OF TECHNOLOGY

With support:
Outline

1. WLAN positioning
2. Pedestrian dead reckoning
3. Models for PDR
4. Results
Comparing different models for WLAN signals

Coverage area models

Fingerprinting

Pathloss models

A Linear State Model for PDR+WLAN Positioning
Inertial measurements

Inertial measurement unit

- Detects linear and angular accelerations
- Direct positioning → integration twice
Pedestrians move usually on a plane walking

Heading change

Footsteps
Comparison of traditional nonlinear model and proposed linear model

State transitions:

\[
\begin{bmatrix}
 r_{1,t} \\
 r_{2,t} \\
 \theta_t \\
 s_t
\end{bmatrix} =
\begin{bmatrix}
 r_{1,t-1} + s_{t-1} \cos \theta_{t-1} \\
 r_{2,t-1} + s_{t-1} \sin \theta_{t-1} \\
 \theta_{t-1} + \Delta \theta_t \\
 s_{t-1}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 r_{1,t} \\
 r_{2,t} \\
 v_{1,t} \\
 v_{2,t}
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 0 & 0 & \cos \Delta \theta_t & -\sin \Delta \theta_t \\
 0 & 0 & \sin \Delta \theta_t & \cos \Delta \theta_t
\end{bmatrix}
\begin{bmatrix}
 r_{1,t-1} \\
 r_{2,t-1} \\
 v_{1,t-1} \\
 v_{2,t-1}
\end{bmatrix}
\]
Estimates after steps with small uncertainty

give

Nonlinear estimate

Linearized estimate

Linear model
Estimates after steps with large uncertainty

Nonlinear estimate

Linearized estimate

Linear model
Effect of gyroscope quality

A Linear State Model for PDR+WLAN Positioning

30.9.2013
Effect of initial angle

Effect of initial heading error

A Linear State Model for PDR+WLAN Positioning

TAMPERE UNIVERSITY OF TECHNOLOGY
Filtered real data

WLAN measurements

Proposed model

Nonlinear model

Nonlinear model with step lengths

100m
Smoothed real data

WLAN measurements

Proposed model

Nonlinear model

Nonlinear model with step lengths

100m
Real data results

<table>
<thead>
<tr>
<th>Initial angle error</th>
<th>WLAN only static</th>
<th>Proposed</th>
<th>Nonlinear sensor footsteps</th>
<th>Nonlinear estimated footsteps</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>8.2m</td>
<td>6.8m</td>
<td>6.7m</td>
<td>7.4m</td>
</tr>
<tr>
<td>90°</td>
<td>8.2m</td>
<td>6.8m</td>
<td>7.4m</td>
<td>10.7m</td>
</tr>
<tr>
<td>180°</td>
<td>8.2m</td>
<td>6.8m</td>
<td>8.2m</td>
<td>12.1m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial angle error</th>
<th>WLAN only static</th>
<th>Proposed</th>
<th>Nonlinear sensor footsteps</th>
<th>Nonlinear estimated footsteps</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>8.2m</td>
<td>4.6m</td>
<td>3.8m</td>
<td>4.3m</td>
</tr>
<tr>
<td>90°</td>
<td>8.2m</td>
<td>4.6m</td>
<td>5.2m</td>
<td>6.9m</td>
</tr>
<tr>
<td>180°</td>
<td>8.2m</td>
<td>4.6m</td>
<td>7.3m</td>
<td>8.0m</td>
</tr>
</tbody>
</table>
Conclusions

- Proposed model:
 - As accurate as similar models in literature when initial state known
 - Outperforms other models when initial state is not known
 - Good for smoothing
 - Can be used, for example, for initialization of a particle filter (Nurminen & al. IPIN2013)