Sirkka-Liisa Eriksson & Heikki Orelma

A Hyperbolic Interpretation of Cauchy Type Kernels in Hyperbolic Function Theory
A Hyperbolic Interpretation of Cauchy Type Kernels in Hyperbolic function Theory

Sirkka-Liisa Eriksson, Heikki Orelma
Department of Mathematics
Tampere University of Technology
P. O. Box 553
33101 Tampere
Finland

February 17, 2010

Abstract
In this paper we study a mean-value property for solutions of the Laplace-Beltrami equation

$$x_n^2 \Delta h - (n - 1)x_n \frac{\partial h}{\partial x_n} = 0$$

with respect to the volume and the surface integral on the Poincaré upper-half space $\mathbb{R}^{n+1}_{+} = \{(x_0, ..., x_n) \in \mathbb{R}^{n+1} : x_n > 0\}$ with the Riemannian metric $g = \frac{dx_0^2 + dx_1^2 + \cdots + dx_n^2}{x_n^2}$. Also we represent the Cauchy type kernels in terms of the hyperbolic geometry.

1 Clifford Numbers

The Clifford algebra $\mathcal{C}_{0,n}$ is the 2^n-dimensional real associative algebra generated by the symbols $\{e_1, ..., e_n\}$ with the multiplication rule

$$e_ie_j + e_je_i = -2\delta_{ij}.$$

A canonical basis of $\mathcal{C}_{0,n}$ is given by $e_A = e_{a_1} \cdots e_{a_k}$, $A = \{a_1, ..., a_k\} \subset M = \{1, ..., n\}$ and $1 \leq a_1 < \cdots < a_k \leq n$. Especially $e_{\emptyset} = 1$ and $e_{\{ij\}} = e_j$. The pseudoscalar is the element $e_M = e_1 \cdots e_n$.

1
The space of \(k \)-vectors is defined by \(\mathcal{C}_k \ell_{0,n} = \text{span}\{e_A : |A| = k\} \) and any \(a \in \mathcal{C}_n \) admits the following multivector decomposition

\[
 a = [a]_0 + [a]_1 + \cdots + [a]_n
\]

with \([a]_k \in \mathcal{C}_k \ell_{n}\). There exists the canonical embedding \(i : \mathbb{R}^{n+1} \hookrightarrow \mathcal{C}_{0,n} \) defined by

\[
 i : (x_0, ..., x_n) \mapsto x_0 + \sum_{j=1}^{n} e_j x_j.
\]

Elements of the set \(\mathbb{R}^{n+1} \cong i(\mathbb{R}^{n+1}) = \mathcal{C}_{0,n}^0 \oplus \mathcal{C}_{0,n}^1 \) are called paravectors. We abbreviate briefly \(e_0 = 1 \).

Let us also define a few involutions. Let \(\{e_1, ..., e_n\} \) an orthonormal basis for \(\mathbb{R}^n \) and \(a, b \in \mathcal{C}_n \). The main–involition is a map \(' : \mathcal{C}_n \to \mathcal{C}_{0,n} \) defined by the relations \(e_i' = -e_i \) and \((ab)' = a'b' \). The conjugation is an anti-involition \(\overline{\cdot} : \mathcal{C}_{0,n} \to \mathcal{C}_n \) defined by the relations \(\overline{e_i} = -e_i \) and \(\overline{ab} = \overline{b}\overline{a} \).

2 On the Poincaré Upper-Half Space

In this section we will consider the certain Riemannian manifold, called the Poincaré Upper-Half Space. Especially we are interested in computing the hyperbolic distances in practice.

In the next section the hyperbolic function theory is related to the Poincaré upper-half model \((\mathbb{R}_+^{n+1}, g)\), where the hyperbolic metric in canonical coordinates is defined by

\[
 g = \frac{dx_0^2 + dx_1^2 + \cdots + dx_n^2}{x_n^2}.
\]

In general, any oriented smooth Riemannian manifold with the metric

\[
 g = \sum_{i,j=0}^{n} g_{ij} dx_i dx_j
\]

admits the coordinate expression (see [14]):

\[
 dV_g(x) = \sqrt{\det(g_{ij}) dx_0 \wedge dx_1 \wedge \cdots \wedge dx_n}.
\]

In the canonical coordinates on the upper-half space model \(\det(g_{ij}) = 1/x_n^{2(n+1)} \). Then the volume element

\[
 dx_k := dV_g(x) = \frac{dx}{x_n^{n+1}}.
\]
where $dx = dx_0 \wedge dx_1 \wedge \cdots \wedge dx_n$ is the Euclidean volume element. We define the hyperbolic surface element on a smooth manifold-with-boundary U in \mathbb{R}^{n+1}_+ with the codimension 0 by

$$d\sigma_h = \nu dS / x_n,$$

where ν is the unit normal field on U and dS the classical scalar surface element.

The metric g allows us to define distances on \mathbb{R}^{n+1}_+. The geodesics are described more detailed in the following theorem.

Theorem 2.1 On the Poincaré half-space model \mathbb{R}^{n+1}_+ geodesics are circles or lines which meet the boundary orthogonally.

Proof. See [20] p. 71 or [15] p. 38. ■ In the essential role in our studies are balls. Next we study balls more detailed. First we shall consider distances on the hyperbolic upper-half space. The hyperbolic upper-half space is an immersed submanifold of \mathbb{R}^{n+1}_+. Its tangent space at any point $x \in \mathbb{R}^{n+1}_+$ can nonetheless be viewed as a subspace of $T_x \mathbb{R}^{n+1}_+$. In addition, by dimensional reasons $T_x \mathbb{R}^{n+1}_+ = T_x \mathbb{R}^{n+1} + 1$ for each $x \in \mathbb{R}^{n+1}_+$. Let $\iota : \mathbb{R}^{n+1}_+ \to \mathbb{R}^{n+1}$ be the canonical immersion. Then we may identify $\iota(\mathbb{R}^{n+1}_+)$ and \mathbb{R}^{n+1}_+ as sets. That identification allow us to use two different geometric structures on \mathbb{R}^{n+1}_+ parallel: the hyperbolic and the Euclidean structures. Thus we may loosely speak of Euclidean distances and balls on \mathbb{R}^{n+1}_+, that is, we may compute the Euclidean distance $|x - y|$ for $x, y \in \mathbb{R}^{n+1}_+$.

Lemma 2.2 The hyperbolic distance $d_h(x, a)$ between the points $x = x_0 + e_1 x_2 + \cdots + x_n e_n$ and $a = a_0 + e_1 a_1 + \cdots + a_n e_n$ in \mathbb{R}^{n+1}_+ is

$$d_h(x, a) = \text{arcosh} \, \lambda(x, a),$$

where

$$\lambda(x, a) = \lambda(a, x) = \frac{|x - a|^2 + 2a_n x_n}{2x_n a_n} = \frac{|x - a|^2}{2x_n a_n} + 1.$$

Proof. See details, e.g., [16]. ■ Next we briefly review the connection between the hyperbolic and the Euclidean distance of two points. As a direct computation we obtain the following formulae.
Lemma 2.3 If \(x = x_0 + e_1 x_2 + \cdots + x_n e_n \) and \(a = a_0 + e_1 a_1 + \cdots + a_n e_n \) are points in \(\mathbb{R}_+^{n+1} \), then
\[
|\lambda(x,a)| = \begin{cases}
2x_n a_n (\lambda(x,a) - 1), & n \leq 2 \\
2x_n a_n (\lambda(x,a) + 1), & n \geq 2
\end{cases}
\]
where \(\lambda(x,a) = \frac{\lambda(x,a) - 1}{\lambda(x,a) + 1} = \tanh^2 \left(\frac{d_h(x,a)}{2} \right) \).

Next we shall prove the connection between the hyperbolic and the Euclidean ball in \(\mathbb{R}_+^{n+1} \).

Proposition 2.4 Let \(\iota : \mathbb{R}_+^{n+1} \to \mathbb{R}_+^{n+1} \) be the canonical immersion. Then
\[
\iota(B_h(a, R_h)) = B_e(\tau(a, R_h), R_e(a, R_h)),
\]
where
\[
\tau(a, R_h) = a_0 + e_1 a_1 + \cdots + a_{n-1} e_{n-1} + a_n e_n \cosh R_h
\]
is the Euclidean center and
\[
R_e(a, R_h) = a_n \sinh R_h
\]
is the corresponding Euclidean radius.

Proof. Let \(x \in B_h(a, R_h) \), that is \(d_h(x,a) < R_h \). This is equivalent to \(\lambda(x,a) < \cosh R_h \). Using the above lemma we may write the inequality as
\[
\frac{|x - a|^2}{2x_n a_n} - 1 < \cosh R_h.
\]
This is equivalent to
\[
|x - a|^2 < 2x_n a_n (\cosh R_h - 1).
\]
Since \(|x - a|^2 = |P(x - a)|^2 + (x_n - a_n)^2 \) we obtain, that this is equivalent to
\[
|P(x - a)|^2 + x_n^2 - 2x_n a_n \cosh R_h + a_n^2 < 0.
\]
Since \(x_n^2 - 2x_n a_n \cosh R_h = (x_n - a_n \cosh R_h)^2 - a_n^2 \cosh^2 R_h \) we obtain
\[
|P(x - a)|^2 + (x_n - a_n \cosh R_h)^2 < a_n (\cosh^2 R_h - 1) = a_n \sinh^2 R_h.
\]
Thus we see that if we define $\tau(a, R_h) = Pa + a_n e_n \cosh R_h$ and $R_e(a, R_h) = a_n \sinh^2 R_h$ we obtain

$$|x - \tau(a, R_h)| < R_e(a, R_h).$$

The proof is complete. □

The preceding proposition allow us to abbreviate briefly by

$$B_h(a, R_h) = B_e(\tau(a, R_h), R_e(a, R_h)).$$

Proposition 2.4 says that if x is a boundary point of the hyperbolic ball $B_h(a, R_h)$, that is $d_h(a, x) = R_h$ then the Euclidean distance between the points x and $\tau(a, R_h)$ is $|x - \tau(a, R_h)| = a_n \sinh R_h$. Putting these immediate consequences together we obtain the following corollary, which has an important role in the forthcoming sections.

Corollary 2.5 If $x \in \mathbb{R}_n^{n+1}$ and $\tau(a, x) = a_0 + a_1 e_1 + \cdots + a_{n-1} e_{n-1} + a_n e_n \cosh d_h(a, x)$ then

$$|x - \tau(a, x)| = a_n \sinh d_h(x, a).$$

3 On Hyperbolic Function Theory

We briefly recall the definition of k–hypermonogenic functions. Let Ω be an open subset of \mathbb{R}_n^{n+1}. We consider functions $f : \Omega \to \mathcal{C}_{0,n}$, whose components are continuously differentiable. Before the definition we should define the following technical tool. We assume that the Clifford algebra $\mathcal{C}_{0,n-1}$ is generated by $\{e_1, \ldots, e_{n-1}\}$. Then for each $a \in \mathcal{C}_n$ there exist Clifford numbers b and c in $\mathcal{C}_{0,n-1}$ satisfying

$$a = b + ce_n.$$

We abbreviate briefly $Pa = b$ and $Qa = c$. The operator P is obviously a projection but Q is not (since $Q^2 = 0$). The decomposition

$$a = Pa + (Qa)e_n$$

is (still) called the projector decomposition. Using the projector decomposition we may define an involution $\sim : \mathcal{C}_{0,n} \to \mathcal{C}_n$ by

$$\hat{a} = Pa - (Qa)e_n.$$

The above involution is called the hat-involution. It is straightforward to see that if $a, b \in \mathcal{C}_n$ then $\hat{a} \hat{b} = \hat{ab}$ and if $\{e_1, \ldots, e_n\}$ is the set of generators of
\(C_{\ell_0, n} \) then \(\hat{e}_j = (-1)^{\delta_{ij}} e_j \).

Obviously the \(P \)- (resp. the \(Q \)-) part is a generalization of the real- (resp. the imaginary-) part of a complex number.

The left Dirac operator in \(C_{\ell_0, n} \) is defined by

\[
D_{\ell} f = \sum_{i=0}^{n} e_i \frac{\partial f}{\partial x_i}
\]

and the right Dirac operator by

\[
D_r f = \sum_{i=0}^{n} \frac{\partial f}{\partial x_i} e_i.
\]

The operators \(\overline{D}_\ell \) and \(\overline{D}_r \) are defined by

\[
\overline{D}_\ell f = \sum_{i=0}^{n} \overline{e}_i \frac{\partial f}{\partial x_i}, \quad \overline{D}_r f = \sum_{i=0}^{n} \frac{\partial f}{\partial x_i} \overline{e}_i.
\]

Let \(\Omega \) be an open subset of \(\mathbb{R}_{+}^{n+1} \). The modified Dirac operators \(M_{\ell}^k \), \(\overline{M}_{\ell}^k \), \(M_{r}^k \) and \(\overline{M}_{r}^k \) are introduced in [2] and [7] by

\[
M_{\ell}^k f (x) = D_{\ell} f (x) + k \frac{Q' f}{x_n},
\]

\[
M_{r}^k f (x) = D_{r} f (x) + k \frac{Q f}{x_n},
\]

and

\[
\overline{M}_{\ell}^k f (x) = \overline{D}_{\ell} f (x) - k \frac{Q' f}{x_n},
\]

\[
\overline{M}_{r}^k f (x) = \overline{D}_{r} f (x) - k \frac{Q f}{x_n},
\]

where \(f \) is a continuously differentiable function on \(\Omega \) and

\[
Q' f = (Q f)', \quad P' f = (P f)'.
\]

The operator \(M_{n-1}^\ell \) is also denoted briefly by \(M \).

\[\text{1} \text{The symbol } \delta_{ij} \text{ is the well-known Kronecker's delta-function.}\]
Definition 3.1 Let $\Omega \subset \mathbb{R}^{n+1}_+$ be open. A continuously differentiable function $f : \Omega \to \mathcal{C}_{0,n}$ is left k-hypermonogenic, if

$$M_k^l f (x) = 0$$

for any $x \in \Omega$. The right k-hypermonogenic functions are defined similarly. The $(n-1)$-left hypermonogenic functions are called hypermonogenic functions.

Paravector-valued hypermonogenic functions are H-solutions introduced by Heinz Leutwiler in [17] and [18]. Clifford algebra-valued hypermonogenic functions are introduced by the first author and Leutwiler and in [7]. Their theory is further studied in [1], [2], [4], [5], [6], [8], [9], [10], [11], [12] and ?. We state some main properties of k-hypermonogenic functions.

Consider the Riemannian manifold (\mathbb{R}^{n+1}_+, g), where

$$g = \frac{dx_0^2 + dx_1^2 + \cdots + dx_n^2}{x_n^2}.$$

One may prove that the corresponding Laplace-Beltrami (cf. [?]) operator is

$$\Delta_{lb} f := x_n^2 \Delta f - (n-1)x_n \frac{\partial f}{\partial x_n}.$$

It is an important fact that the P-part of a hypermonogenic function is a null-solution of the Laplace-Beltrami operator and the Q-part is an eigenfunction as follows.

Lemma 3.2 ([7]) Let $f : \Omega \to \mathcal{C}_n$ be twice continuously differentiable. Then

$$P(MM^f) = \Delta f - \frac{n-1}{x_n} \frac{\partial f}{\partial x_n}$$

and

$$Q(MM^f) = \Delta Q f - \frac{n-1}{x_n} \frac{\partial Q f}{\partial x_n} + (n-1) \frac{Q f}{x_n^2}.$$

We recall the Cauchy formulae for their P- and Q-part separately. We need the notion of the manifold-with-boundary, see [19]. The existence of the outer unit normal, see [14].

Proposition 3.3 ([2]) If f is a hypermonogenic function on Ω and $K \subset \Omega$ is an oriented $(n+1)$-dimensional manifold-with-boundary. Then for each $a \in K$ we have

$$P f(a) = 2^n a^n \frac{\omega_n}{\omega_{n+1}} \int_{\partial K} P(p(x,a) \nu(x) f(x)) \frac{dS(x)}{x_n^{n-1}}$$

We state some main properties of k-hypermonogenic functions. The $(n-1)$-left hypermonogenic functions are called hypermonogenic functions.

Paravector-valued hypermonogenic functions are H-solutions introduced by Heinz Leutwiler in [17] and [18]. Clifford algebra-valued hypermonogenic functions are introduced by the first author and Leutwiler and in [7]. Their theory is further studied in [1], [2], [4], [5], [6], [8], [9], [10], [11], [12] and ?. We state some main properties of k-hypermonogenic functions.

Consider the Riemannian manifold (\mathbb{R}^{n+1}_+, g), where

$$g = \frac{dx_0^2 + dx_1^2 + \cdots + dx_n^2}{x_n^2}.$$

One may prove that the corresponding Laplace-Beltrami (cf. [?]) operator is

$$\Delta_{lb} f := x_n^2 \Delta f - (n-1)x_n \frac{\partial f}{\partial x_n}.$$

It is an important fact that the P-part of a hypermonogenic function is a null-solution of the Laplace-Beltrami operator and the Q-part is an eigenfunction as follows.

Lemma 3.2 ([7]) Let $f : \Omega \to \mathcal{C}_n$ be twice continuously differentiable. Then

$$P(MM^f) = \Delta f - \frac{n-1}{x_n} \frac{\partial f}{\partial x_n}$$

and

$$Q(MM^f) = \Delta Q f - \frac{n-1}{x_n} \frac{\partial Q f}{\partial x_n} + (n-1) \frac{Q f}{x_n^2}.$$

We recall the Cauchy formulae for their P- and Q-part separately. We need the notion of the manifold-with-boundary, see [19]. The existence of the outer unit normal, see [14].

Proposition 3.3 ([2]) If f is a hypermonogenic function on Ω and $K \subset \Omega$ is an oriented $(n+1)$-dimensional manifold-with-boundary. Then for each $a \in K$ we have

$$P f(a) = 2^n a^n \frac{\omega_n}{\omega_{n+1}} \int_{\partial K} P(p(x,a) \nu(x) f(x)) \frac{dS(x)}{x_n^{n-1}}$$

We state some main properties of k-hypermonogenic functions. The $(n-1)$-left hypermonogenic functions are called hypermonogenic functions.

Paravector-valued hypermonogenic functions are H-solutions introduced by Heinz Leutwiler in [17] and [18]. Clifford algebra-valued hypermonogenic functions are introduced by the first author and Leutwiler and in [7]. Their theory is further studied in [1], [2], [4], [5], [6], [8], [9], [10], [11], [12] and ?. We state some main properties of k-hypermonogenic functions.

Consider the Riemannian manifold (\mathbb{R}^{n+1}_+, g), where

$$g = \frac{dx_0^2 + dx_1^2 + \cdots + dx_n^2}{x_n^2}.$$

One may prove that the corresponding Laplace-Beltrami (cf. [?]) operator is

$$\Delta_{lb} f := x_n^2 \Delta f - (n-1)x_n \frac{\partial f}{\partial x_n}.$$

It is an important fact that the P-part of a hypermonogenic function is a null-solution of the Laplace-Beltrami operator and the Q-part is an eigenfunction as follows.

Lemma 3.2 ([7]) Let $f : \Omega \to \mathcal{C}_n$ be twice continuously differentiable. Then

$$P(MM^f) = \Delta f - \frac{n-1}{x_n} \frac{\partial f}{\partial x_n}$$

and

$$Q(MM^f) = \Delta Q f - \frac{n-1}{x_n} \frac{\partial Q f}{\partial x_n} + (n-1) \frac{Q f}{x_n^2}.$$

We recall the Cauchy formulae for their P- and Q-part separately. We need the notion of the manifold-with-boundary, see [19]. The existence of the outer unit normal, see [14].

Proposition 3.3 ([2]) If f is a hypermonogenic function on Ω and $K \subset \Omega$ is an oriented $(n+1)$-dimensional manifold-with-boundary. Then for each $a \in K$ we have

$$P f(a) = 2^n a^n \frac{\omega_n}{\omega_{n+1}} \int_{\partial K} P(p(x,a) \nu(x) f(x)) \frac{dS(x)}{x_n^{n-1}}$$

We state some main properties of k-hypermonogenic functions. The $(n-1)$-left hypermonogenic functions are called hypermonogenic functions.

Paravector-valued hypermonogenic functions are H-solutions introduced by Heinz Leutwiler in [17] and [18]. Clifford algebra-valued hypermonogenic functions are introduced by the first author and Leutwiler and in [7]. Their theory is further studied in [1], [2], [4], [5], [6], [8], [9], [10], [11], [12] and ?. We state some main properties of k-hypermonogenic functions.

Consider the Riemannian manifold (\mathbb{R}^{n+1}_+, g), where

$$g = \frac{dx_0^2 + dx_1^2 + \cdots + dx_n^2}{x_n^2}.$$

One may prove that the corresponding Laplace-Beltrami (cf. [?]) operator is

$$\Delta_{lb} f := x_n^2 \Delta f - (n-1)x_n \frac{\partial f}{\partial x_n}.$$

It is an important fact that the P-part of a hypermonogenic function is a null-solution of the Laplace-Beltrami operator and the Q-part is an eigenfunction as follows.

Lemma 3.2 ([7]) Let $f : \Omega \to \mathcal{C}_n$ be twice continuously differentiable. Then

$$P(MM^f) = \Delta f - \frac{n-1}{x_n} \frac{\partial f}{\partial x_n}$$

and

$$Q(MM^f) = \Delta Q f - \frac{n-1}{x_n} \frac{\partial Q f}{\partial x_n} + (n-1) \frac{Q f}{x_n^2}.$$

We recall the Cauchy formulae for their P- and Q-part separately. We need the notion of the manifold-with-boundary, see [19]. The existence of the outer unit normal, see [14].

Proposition 3.3 ([2]) If f is a hypermonogenic function on Ω and $K \subset \Omega$ is an oriented $(n+1)$-dimensional manifold-with-boundary. Then for each $a \in K$ we have

$$P f(a) = 2^n a^n \frac{\omega_n}{\omega_{n+1}} \int_{\partial K} P(p(x,a) \nu(x) f(x)) \frac{dS(x)}{x_n^{n-1}}$$
where \(dS \) is the scalar surface element, \(\nu \) is the outer unit normal vector field, and

\[
p(x, a) = -\frac{1}{2^{2n-1}a_n} \frac{D_t}{|x - a|^{n-1}|x - \hat{a}|^{n-1}} \int_{[x-a]} (1 - s)^{n-1} ds
\]

\[
= \frac{x_n^{n-1}(x - a)^{-1} - (x - \hat{a})^{-1}}{2a_n |x - a|^{n-1}|x - \hat{a}|^{n-1}}.
\]

Proposition 3.4 ([2]) If \(f \) is a hypermonogenic function on \(\Omega \) and \(K \subset \Omega \) is an oriented \((n + 1)\)-dimensional manifold-with-boundary. Then for each \(a \in K \) we have

\[
Qf(a) = \frac{2^n a_n^{n-1}}{\omega_{n+1}} \int_{\partial K} Q(q(x, a)\nu(x)f(x))dS(x)
\]

where \(dS \) is the scalar surface element, \(\nu \) is the outer unit normal vector field, and

\[
q(x, a) = -\frac{1}{2(n-1)} \frac{D_t}{|x - a|^{n-1}|x - \hat{a}|^{n-1}} \frac{1}{(x - a)^{-1} + (x - \hat{a})^{-1}}
\]

\[
= \frac{1}{2} \frac{(x - a)^{-1} + (x - \hat{a})^{-1}}{|x - a|^{n-1}|x - \hat{a}|^{n-1}}.
\]

4 Hyperbolic Interpretation of the \(P \)- and \(Q \)-kernel

In this section we will study how we can express the \(P \)- and \(Q \)-kernels using hyperbolic geometry. First we review some necessary tools.

Lemma 4.1 Let \(\Omega \) be an open subset of \(\mathbb{R}^{n+1} \). If \(h : \Omega \to \mathbb{R} \) and \(g : (a, b) \to \mathbb{R} \) such that \(h(\Omega) \subset (a, b) \) and are differentiable, then

\[
D_t (g \circ h)(x) = g'(h(x)) D_t h(x).
\]

and similarly

\[
\overline{D_t} (g \circ h)(x) = g'(h(x)) \overline{D_t} h(x)
\]

for any \(x \in \Omega \).

Lemma 4.2 Let \(x \) and \(a \) be point in \(\mathbb{R}^{n+1} \). Then

\[
\frac{\partial \lambda(x, a)}{\partial x_i} = \frac{x_i - a_i - a_n (\lambda(x, a) - 1) \delta_{in}}{x_n a_n}.
\]
Proof. We calculate as usual

\[\frac{\partial \lambda(x, a)}{\partial x_i} = \frac{x_i - a_i}{x_n a_n} - \frac{|x - a|^2}{2x_n^2 a_n} \delta_{in}. \]

Using Lemma 2.3 we infer

\[\frac{\partial \lambda(x, a)}{\partial x_i} = \frac{x_i - a_i}{x_n a_n} - \frac{2x_n a_n (\lambda(x, a) - 1) \delta_{in}}{2x_n^2 a_n} \]
\[= \frac{x_i - a_i - a_n (\lambda(x, a) - 1) \delta_{in}}{x_n a_n}, \]

completing the proof. ■

Lemma 4.3 If \(a \in \mathbb{R}_+^{n+1} \) and \(\tau(a, R_h) = a_0 + a_1 e_1 + \cdots + a_{n-1} e_{n-1} + a_n \cosh R_h e_n \)

then

\[D_{\ell} \lambda(x, a) = \frac{P(x - a) - (x_n - a_n \lambda(x, a)) e_n}{x_n a_n} = \frac{x - \tau(a, R_h)}{x_n a_n} \]

and

\[D_{\ell} \frac{|x - a|}{|x - \hat{a}|} = \frac{P(x - a) - (x_n - a_n \lambda(x, a)) e_n}{(\lambda(x, a) - 1)^{\frac{1}{2}} (\lambda(x, a) + 1)^{\frac{3}{2}} x_n a_n} = \frac{x - \tau(a, R_h)}{(\lambda(x, a) - 1)^{\frac{1}{2}} (\lambda(x, a) + 1)^{\frac{3}{2}} x_n a_n}. \]

Proof. Applying the above lemma we compute

\[D_{\ell} \lambda(x, a) = \sum_{i=0}^{n} e_i \left(\frac{x_i - a_i - a_n (\lambda(x, a) - 1) \delta_{in}}{x_n a_n} \right) \]
\[= \frac{P(x - a) - (x_n - a_n \lambda(x, a)) e_n}{x_n a_n}. \]

Since

\[\frac{|x - a|}{|x - \hat{a}|} = \sqrt{\frac{\lambda(x, a) - 1}{\lambda(x, a) + 1}} \]

we infer

\[D_{\ell} \left(\sqrt{\frac{\lambda(x, a) - 1}{\lambda(x, a) + 1}} \right) = \frac{1}{\sqrt{\frac{\lambda(x, a) - 1}{\lambda(x, a) + 1}}^2 (\lambda(x, a) + 1)^2} D_{\ell} \lambda(x, a) \]
\[= \frac{P(x - a) - (x_n - a_n \lambda(x, a)) e_n}{(\lambda(x, a) - 1)^{\frac{1}{2}} (\lambda(x, a) + 1)^{\frac{3}{2}} x_n a_n}. \]

The proof is complete. ■
Theorem 4.4 If $d_h(x, a)$ is the hyperbolic distance between the points x and a in \mathbb{R}^{n+1} then

$$p(x, a) = \frac{x - \tau(a, x)}{2^n x_n a_n^{n+1} \sinh^{n+1} d_h(x, a)} = \frac{1}{2^n x_n |x - \tau(a, x)|^{n+1}},$$

where

$$\tau(a, x) = a_0 + a_1 e_1 + \cdots + a_{n-1} e_{n-1} + a_n \cosh d_h(x, a) e_n.$$

Proof. Noting the definition of $p(x, a)$, see Proposition 3.3, and

$$1 - \frac{|a - x|^2}{|a - \hat{y}|^2} = \frac{4 a_n y_n}{|a - \hat{y}|^2},$$

we obtain

$$p(x, a) = -\frac{1}{2^{n-1} a_n} \mathcal{D}_\ell \left(\int_{\frac{|a-x|}{|x-a|}}^{1} \frac{(1 - s^2)^{n-1}}{s^n} ds \right)$$

$$= \frac{1}{2^{n-1} a_n} \left(1 - \frac{|a-x|^2}{|x-a|^2} \right)^{n-1} \frac{1}{|x-a|^n} \mathcal{D}_\ell \left(\frac{|a-x|}{|x-a|} \right)$$

$$= \frac{1}{2^{n-1} a_n} \frac{(4 x_n a_n)^{n-1}}{|x-a|^{2(n-1)}} \frac{|a-x|^{-n}}{|x-a|^{-n}} \mathcal{D}_\ell \left(\frac{|a-x|}{|x-a|} \right).$$

Applying Lemma 2.2 and Lemma 2.3 we obtain

$$2^n a_n^2 p(x, a)$$

$$= \left(\frac{2 x_n a_n}{2 a_n x_n (\lambda(x, a) + 1)} \right)^{n-1} (\lambda(x, a) + 1)^{\frac{n}{2}} \frac{P(x-a) - (x_n - a_n \lambda(x, a)) e_n}{(\lambda(x, a) - 1)^{\frac{n}{2}} (\lambda(x, a) - 1)^{\frac{1}{2}} (\lambda(x, a) + 1)^{\frac{3}{2}} x_n a_n}$$

$$= \frac{P(x-a) - (x_n - a_n \lambda(x, a)) e_n}{(\lambda(x, a)^2 - 1)^{\frac{n+1}{2}} x_n a_n}.$$

Since

$$\lambda(x, a)^2 - 1 = \cosh^2 d_h(x, a) - 1 = \sinh^2 d_h(x, a)$$

we conclude

$$p(x, a) = \frac{P(x-a) - (x_n - a_n \lambda(x, a)) e_n}{2^n x_n a_n^{n+1} \sinh^{n+1} d_h(x, a)}.$$
Thus the first equality holds. Using Corollary 2.5 we obtain

\[p(x, a) = \frac{1}{2^n x_n} \frac{x - \tau(a, x)}{|x - \tau(a, x)|^{n+1}}, \]

and the proof follows. ■

Remark 4.5 The theorem in above give us an interpretation to the p-kernel. In the Euclidean Clifford analysis the Cauchy’s kernel is \(\frac{x - a}{|x - a|^{n+1}} \) (of course up to constant). In the hyperbolic case the p-kernel is just the Euclidean kernel, but we compute it in the different center. Also there is the coefficient \(1/x_n \), what is something what we expected.

Our next aim is to compute the q-kernel using hyperbolic tools. We start the mission giving the following lemma.

Lemma 4.6 Let \(\Omega \subset \mathbb{R}^{n+1} \) be an open subset. If \(g : (a_1, b_1) \times (a_2, b_2) \to \mathbb{R} \) and \(f_i : (a_i, b_i) \to \mathbb{R} \) are differentiable for \(i = 1, 2 \). Assume that \(h_i(\Omega) \subset (a_i, b_i) \) for \(i = 1, 2 \). Then

\[D_{\ell}(g \circ (h_1, h_2)) = \partial_1 g \circ (h_1, h_2) D_{\ell} h_1 + \partial_2 g \circ (h_1, h_2) D_{\ell} h_2. \]

As an application of the preceding lemma we obtain the following theorem.

Theorem 4.7 If \(d_h(x, a) \) is the hyperbolic distance between the points \(x \) and \(a \) in \(\mathbb{R}^{n+1}_+ \) then

\[q(x, a) = \frac{(x - \tau(a, x)) \cosh d_h(x, a) - a_n \sinh^2 d_h(x, a)e_n}{(2a_n x_n)^n \sinh^{n+1} d_h(x, a)} \]

\[= \frac{1}{(2x_n)^n} \frac{x - \tau(a, x)}{|x - \tau(a, x)|^{n+1}} Q \tau(a, x) - \frac{1}{(2x_n)^n} \frac{1}{|x - \tau(a, x)|^{n-1}} e_n, \]

where

\[\tau(a, x) = a_0 + a_1 e_1 + \cdots + a_{n-1} e_{n-1} + a_n \cosh d_h(x, a)e_n. \]

Proof. Recall

\[q(x, a) = \frac{1}{2a_n x_n} D_{\ell} H(x, a) \]

where

\[H(x, a) = \frac{1}{((2x_n a_n)(\lambda(x, a) - 1))^{n+1} ((2x_n a_n)(\lambda(x, a) + 1))^{n+1}}. \]
Let us define the functions $g(s_1, s_2) = \left(\frac{1}{s_1 s_2}\right)^{\frac{n-1}{2}}$, and $h_i(x) = (2x_1 a_n)(\lambda(x,a) + (-1)^i)$ for $i = 1, 2$. Thus $H = g \circ (h_1, h_2)$. Now

$$\partial_i g(s_1, s_2) = -\frac{n-1}{2} \frac{1}{s_1(s_1 s_2)^{\frac{n-1}{2}}}.$$

and using Lemma 4.3

$$\overline{D}_i h_i(x) = 2a_n x \overline{D}_i \lambda(x,a) + 2a_n(\lambda(x,a) + (-1)^i) \overline{D}_i x_n$$

$$\overline{D}_i(g(h_1(x), h_2(x))) = \partial_1 g \circ (h_1(x), h_2(x)) \overline{D}_i h_1(x) + \partial_2 g \circ (h_1(x), h_2(x)) \overline{D}_i h_2(x)$$

$$= -\frac{n-1}{2} \frac{\overline{D}_i h_1(x)}{h_1(x) h_2(x)^{\frac{n-1}{2}}} - \frac{n-1}{2} \frac{\overline{D}_i h_2(x)}{h_2(x) h_1(x)^{\frac{n-1}{2}}}$$

$$= -\frac{n-1}{2} \frac{h_1(x) \overline{D}_i h_1(x) + h_1(x) \overline{D}_i h_2(x)}{(h_1(x) h_2(x))^{\frac{n-1}{2}}}.$$

Consider now the numerator of the above quotient. We compute

$$\sum_{i=1}^{2} h_i(x) \overline{D}_i h_{3-i}(x) = 4x_1 a_n \sum_{i=1}^{2} (\lambda(x,a) + (-1)^i)((x - \tau(a,x)) - a_n(\lambda(x,a) + (-1)^{3-i})e_n)$$

$$= 8x_1 a_n \lambda(x,a)(x - \tau(a,x))$$

$$- 4x_1 a_n^2 \sum_{i=1}^{2} (\lambda(x,a) + (-1)^i)(\lambda(x,a) - (-1)^i)e_n.$$

The second term is

$$4x_1 a_n^2 \sum_{i=1}^{2} (\lambda(x,a) + (-1)^i)(\lambda(x,a) - (-1)^i)e_n$$

$$= 4x_1 a_n^2 \sum_{i=1}^{2} (\lambda^2(x,a) - 1)e_n$$

$$= 8x_1 a_n^2 (\lambda^2(x,a) - 1)e_n.$$

Thus

$$h_2(x) \overline{D}_i h_1(x) + h_1(x) \overline{D}_i h_2(x) = 8x_1 a_n \lambda(x,a)(x - \tau(a,x)) - 8x_1 a_n^2 (\lambda^2(x,a) + 1)e_n.$$
Hence we obtain
\[q(x,a) = \frac{1}{4} \left(h_2(x) \mathcal{D}_t h_1(x) + h_1(x) \mathcal{D}_t h_2(x) \right) \frac{\lambda(x,a)}{(\lambda(x,a))^2} \]
\[= \frac{1}{4} \left(8x_n a_n (x - \tau(a,x)) - 8x_n a_n^2 (\lambda^2(x,a) - 1) e_n \right). \]

Since \((\lambda(x,a) - 1)(\lambda(x,a) + 1) = \lambda(x,a)^2 - 1 = \sinh^2 d_h(x,a)\) we have
\[q(x,a) = \frac{(x - \tau(a,x)) \cosh d_h(x,a) - a_n \sinh^2 d_h(x,a) e_n}{(2x_n a_n)^{n+1} \sinh^{n+1} d_h(x,a)}, \]
and the first equality holds. Then
\[q(x,a) = \frac{(x - \tau(a,x)) \cosh d_h(x,a)}{(2x_n a_n)^n \sinh^n d_h(x,a)} - \frac{e_n}{(2x_n a_n)^{n-1} \sinh^{n-1} d_h(x,a)}. \]
Since \(\cosh d_h(x,a) = \frac{Q_\tau(a,x)}{a_n}\) we have
\[q(x,a) = \frac{(x - \tau(a,x))}{(2x_n a_n)^n \sinh^n d_h(x,a)} Q_\tau(a,x) - \frac{e_n}{(2x_n a_n)^{n-1} \sinh^{n-1} d_h(x,a)}. \]
The second equality follows from Corollary 2.5. ■

Remark 4.8 The theorem in above give us an interpretation to the \(q\)-kernel. Recall that the Newton’s kernel in the theory of harmonic function is (up to constant) \(\frac{1}{|x-a|^{n-1}}\). Thus we see that the \(q\)-kernel is a linear combination of the Cauchy’s and the Newton’s kernels with the center \(\tau(a,x)\). Moreover, since we consider the kernel of the Cauchy’s formula for the \(Q\)-part of a hypermonogenic function, it can be expected that the coefficient \(e_n\) is in the special role.

5 The Mean-Value Theorem for the \(P\)-Part of a Hypermonogenic Function

Lastly we will study a mean-value property of the \(P\)-part of a hypermonogenic function. The hyperbolic machinery developed in the preceding sections has a strong influence on the proof.
Theorem 5.1 Let \(\Omega \) be an open subset of \(\mathbb{R}^{n+1}_+ \). If \(f \) is hypermonogenic in \(\Omega \), then
\[
P f(a) = \frac{a_n^n}{\omega_{n+1} R_e^n} \int_{\partial B_h(a,R_h)} P f(x) \frac{dS(x)}{a_n^n}
\]
for any hyperbolic ball \(B_h(a,R_h) \) with \(\overline{B_h(a,R_h)} \subset \Omega \).

Proof. Using Proposition 3.3 we obtain
\[
P f(a) = 2^n a_n^n \int_{\partial B_h(a,R_h)} P(p(x,a) \nu(x)f(x)) \frac{dS(x)}{x_n^{n-1}}.
\]

Since
\[
p(x,a) = \frac{x - \tau(a)}{2^n x_n a_n^{n+1} \sinh^{n+1} d_h(x,a)},
\]
and
\[
\nu(x) = \frac{x - \tau(a)}{R_e}
\]
we have
\[
p(x,a) \nu(x) = \frac{|x - \tau(a)|^2}{2^n x_n a_n^{n+1} R_e \sinh^{n+1} d_h(x,a)}.
\]
Moreover since \(|x - \tau(a)|^2 = R_e^2 \) and \(R_e = a_n \sinh R_h \) we obtain
\[
p(x,a) \nu(x) = \frac{1}{2^n x_n R_e^n}.
\]

Then
\[
P f(a) = \frac{a_n^n}{\omega_{n+1} R_e^n} \int_{\partial B_h(a,R_h)} P f(x) \frac{dS(x)}{a_n^n}.
\]
The proof is complete. \(\blacksquare \) Also we’d like to recall the following structure theorem.

Theorem 5.2 ([6]) Let \(U \subset \mathbb{R}^{n+1}_+ \) be open. The following properties are equivalent:

(a) \(h \) is hyperbolically harmonic on \(U \).

(b) \(h \) is smooth and
\[
h(a) = \frac{1}{\sigma_n \sinh^n R_h} \int_{\partial B_h(a,R_h)} h(x) d\sigma_h(x)
\]
for all \(\overline{B_h(a,R_h)} \subset U \).
(c) \(h \) is smooth and
\[
h(a) = \frac{1}{V(B_h(a, R_h))} \int_{B_h(a, R_h)} h(x) dx_h(x)
\]
for all \(\overline{B_h(a, R_h)} \subset U \) where \(V(B_h(a, R_h)) = \sigma_n \int_0^{R_h} \sinh^n(t) dt \) is the hyperbolic volume of the ball \(B_h(a, R_h) \).

The corresponding theorem is available also for the \(Q \)-part of a hypermonogenic function. We shall study these topics in the forthcoming paper [13].

References

